Search results for " Reactive"

showing 10 items of 176 documents

Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture.

2017

Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferati…

0106 biological sciences0301 basic medicineTFs transcription factorsOverexpressionBiologíaBiFC bimolecular fluorescence complementationClinical BiochemistryCell Culture TechniquesTobacco BY-2 cells01 natural sciencesBiochemistryTBY-2 tobacco bright yellow-2DTT 14-dithiothreitolBimolecular fluorescence complementationThioredoxinsGene Expression Regulation PlantTrx thioredoxinlcsh:QH301-705.5GFP green fluorescent proteinlcsh:R5-920biologyProliferating cell nuclear antigen (PCNA)Cell cycleGlutathione3. Good healthCell biologyMitochondriaNTR NADPH thioredoxin reductaseProtein TransportDEM diethyl maleateRT-qPCR Reverse transcription quantitative polymerase chain reactionThioredoxinlcsh:Medicine (General)Oxidation-ReductionAMS 4-acetamido-4-maleimidylstilbene-22-disulfonic acidResearch PaperPCNA proliferating cell nuclear antigenOex overexpressingCell cycleNucleusThioredoxin o103 medical and health sciencesROS reactive oxygen speciesDownregulation and upregulationProliferating Cell Nuclear AntigenTobaccoDAPI 46-diamidine-2-phenylindolmCBM monochlorobimaneCellular compartmentCell NucleusCell growthOrganic ChemistryBotánicaPeasMolecular biologyYFP yellow fluorescent proteinProliferating cell nuclear antigenTBS Tris-buffered salineOD optical density030104 developmental biologylcsh:Biology (General)Cell cultureRNA reactive nitrogen speciesbiology.proteinPrx peroxiredoxinBSA bovine serum albumin010606 plant biology & botanyRedox biology
researchProduct

Are Mitochondrial Fusion and Fission Impaired in Leukocytes of Type 2 Diabetic Patients?

2016

Mitochondrial fusion/fission alterations have been evaluated in different tissues of type 2 diabetic (T2D) patients. However, it is not known whether mitochondrial dynamics is disturbed in the leukocytes of T2D patients and whether glycemic control affects its regulation. Anthropometric and metabolic parameters in 91 T2D patients (48 with glycated hemoglobin [HbA1c]6.5% and 43 with HbA1c6.5%) were characteristic of the disease when compared with 78 control subjects. We observed increased reactive oxygen species production in leukocytes from diabetic patients, together with a reduced mitochondrial oxygen consumption rate, especially in poorly controlled patients. Mitochondrial fusion was red…

0301 basic medicineAdultMalemedicine.medical_specialtyendocrine system diseasesEndotheliumPhysiologyClinical BiochemistryCell CommunicationBiologymedicine.disease_causeBiochemistryMitochondrial DynamicsMitochondrial Membrane Transport Proteins03 medical and health scienceschemistry.chemical_compound0302 clinical medicineInternal medicineDiabetes mellitusmedicineLeukocytesHumansMolecular BiologyGeneral Environmental ScienceGlycemicAgedCase-control studyIncreased reactive oxygen species productionCell BiologyMiddle Agedmedicine.diseaseMitochondriaOxidative Stress030104 developmental biologyEndocrinologymedicine.anatomical_structuremitochondrial fusionchemistryDiabetes Mellitus Type 2Gene Expression Regulation030220 oncology & carcinogenesisCase-Control StudiesGeneral Earth and Planetary SciencesFemaleGlycated hemoglobinEndothelium VascularReactive Oxygen SpeciesOxidative stressBiomarkersAntioxidantsredox signaling
researchProduct

Indicaxanthin from Opuntia ficus indica (L. Mill) Inhibits Oxidized LDL-Mediated Human Endothelial Cell Dysfunction through Inhibition of NF-κB Activ…

2019

Oxidized low-density lipoproteins (oxLDL) play a pivotal role in the etiopathogenesis of atherosclerosis through the activation of inflammatory signaling events eventually leading to endothelial dysfunction and senescence. In the present work, we investigated the effects of indicaxanthin, a bioavailable, redox-modulating phytochemical from Opuntia ficus indica fruits, with anti-inflammatory activity, against oxLDL-induced endothelial dysfunction. Human umbilical vein cord cells (HUVEC) were stimulated with human oxLDL, and the effects of indicaxanthin were evaluated in a range between 5 and 20 μM, consistent with its plasma level after a fruit meal (7 μM). Pretreatment with indicaxanthin si…

0301 basic medicineAgingArticle SubjectTranscription GeneticCell SurvivalPyridineHuman Umbilical Vein Endothelial Cell030204 cardiovascular system & hematologyPharmacologyBiochemistryUmbilical vein03 medical and health scienceschemistry.chemical_compound0302 clinical medicineSettore BIO/10 - BiochimicamedicineRNA MessengerReactive Nitrogen SpecieEndothelial dysfunctionlcsh:QH573-671CytotoxicityReactive nitrogen specieschemistry.chemical_classificationReactive oxygen specieslcsh:CytologyNF-kappa BOpuntiaHydrogen PeroxideCell BiologyGeneral MedicineNFKB1medicine.diseaseSettore CHIM/08 - Chimica FarmaceuticaUp-RegulationLipoproteins LDLEndothelial stem cell030104 developmental biologychemistryCell Adhesion MoleculeBetaxanthinThiobarbituric Acid Reactive SubstanceReactive Oxygen SpecieOxidation-ReductionIndicaxanthinATP Binding Cassette Transporter 1HumanOxidative Medicine and Cellular Longevity
researchProduct

Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants

2017

One of the contributory causes of colon cancer is the negative effect of reactive oxygen species on DNA repair mechanisms. Currently, there is a growing support for the concept that oxidative stress may be an important etiological factor for carcinogenesis. The purpose of this review is to elucidate the role of oxidative stress in promoting colorectal carcinogenesis and to highlight the potential protective role of antioxidants. Several studies have documented the importance of antioxidants in countering oxidative stress and preventing colorectal carcinogenesis. However, there are conflicting data in the literature concerning its proper use in humans, since these studies did not yield defin…

0301 basic medicineCancer ResearchCarcinogenesisSettore MED/06 - Oncologia MedicaColorectal cancerDNA repairCellReviewColorectal Neoplasmmedicine.disease_causeAntioxidants03 medical and health sciences0302 clinical medicineAntioxidants; Colorectal cancer; Dysbiosis; Oxidative stress; Review; Animals; Antioxidants; Carcinogenesis; Colorectal Neoplasms; Humans; Reactive Oxygen Species; Oxidative Stress; Oncology; Cancer ResearchAnimalsHumansMedicinecolorectal cancer dysbiosis microbioma oxodative stress carcinogenesiCarcinogenesichemistry.chemical_classificationReactive oxygen speciesAnimalbusiness.industryOxidative StreGeneral MedicineColorectal carcinogenesismedicine.diseaseColorectal cancerDysbiosiOxidative StressSettore MED/18 - Chirurgia Generalecolorectal cancer dysbiosis microbioma oxodative stress carcinogenesis030104 developmental biologymedicine.anatomical_structureOncologyBiochemistrychemistry030220 oncology & carcinogenesisCancer researchAntioxidantColorectal NeoplasmsReactive Oxygen SpeciesReactive Oxygen SpeciebusinessCarcinogenesisDysbiosisOxidative stressHumanAnticancer Research
researchProduct

Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vi…

2018

AbstractCell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in …

0301 basic medicineCancer ResearchCellular differentiationCellstem cells; oxidative stress; clone isolation/dk/atira/pure/subjectarea/asjc/2800/2804Mice SCIDp38 Mitogen-Activated Protein KinasesMiceCell MovementProtein IsoformsMuscular Dystrophy/dk/atira/pure/subjectarea/asjc/2400/2403Settore BIO/06 - Anatomia Comparata E Citologiaeducation.field_of_studylcsh:CytologyStem CellsSettore BIO/13Cell DifferentiationSkeletalCell biologymedicine.anatomical_structureMuscleMatrix Metalloproteinase 2Animals; Cell Cycle Checkpoints; Cell Differentiation; Cell Line; Cell Movement; Cell Survival; Hydrogen Peroxide; Matrix Metalloproteinase 2; Mice; Mice SCID; Muscle Skeletal; Muscular Dystrophy Animal; Oxidative Stress; Protein Isoforms; Reactive Oxygen Species; Sarcoglycans; Stem Cell Transplantation; Stem Cells; p38 Mitogen-Activated Protein Kinases/dk/atira/pure/subjectarea/asjc/1300/1306/dk/atira/pure/subjectarea/asjc/1300/1307Cell SurvivalPopulationImmunologyBiologySCIDArticleCell Line03 medical and health sciencesCellular and Molecular NeuroscienceIn vivoSarcoglycansmedicineAnimalsProgenitor celllcsh:QH573-671educationMuscle Skeletaloxidative streMesoangioblastAnimalCell BiologyCell Cycle CheckpointsHydrogen PeroxideMuscular Dystrophy Animalclone isolationTransplantationstem cellOxidative Stress030104 developmental biologyCell cultureReactive Oxygen SpeciesStem Cell TransplantationCell Death & Disease
researchProduct

Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis

2016

Triple-negative breast cancers (TNBCs) are aggressive forms of breast carcinoma associated with a high rate of recidivism. In this paper, we report the production of mammospheres from three lines of TNBC cells and demonstrate that both parthenolide (PN) and its soluble analog dimethylaminoparthenolide (DMAPT) suppressed this production and induced cytotoxic effects in breast cancer stem-like cells, derived from dissociation of mammospheres. In particular, the drugs exerted a remarkable inhibitory effect on viability of stem-like cells. Such an effect was suppressed by N-acetylcysteine, suggesting a role of reactive oxygen species (ROS) generation in the cytotoxic effect. Instead z-VAD, a ge…

0301 basic medicineCancer ResearchNecrosismedicine.disease_causeCancer -- Treatmentchemistry.chemical_compoundOnium CompoundsMedicineCytotoxic T cellBreast -- CancerMembrane Potential Mitochondrialchemistry.chemical_classificationSuperoxideMitochondrial DNAMitochondriaNeoplastic Stem CellsFemaleOriginal Articlemedicine.symptomOligopeptidesSesquiterpenesCell SurvivalNF-E2-Related Factor 2ImmunologyBreast NeoplasmsReal-Time Polymerase Chain Reaction03 medical and health sciencesCellular and Molecular NeuroscienceDownregulation and upregulationCell Line TumorHumansParthenolideparthenolide cancer stem cell triple-negative breast cancer reactive oxygen species nuclear factor erythroid 2-related factor 2Fluorescent DyesReactive oxygen speciesbusiness.industryAcetophenonesNADPH OxidasesCell BiologyCell nuclei -- AbnormalitiesOxidative Stress030104 developmental biologychemistryApocyninImmunologyCancer researchReactive Oxygen SpeciesbusinessOxidative stressTranscription FactorsCell Death & Disease
researchProduct

Artesunate Inhibits Growth of Sunitinib-Resistant Renal Cell Carcinoma Cells through Cell Cycle Arrest and Induction of Ferroptosis

2020

Although innovative therapeutic concepts have led to better treatment of advanced renal cell carcinoma (RCC), efficacy is still limited due to the tumor developing resistance to applied drugs. Artesunate (ART) has demonstrated anti-tumor effects in different tumor entities. This study was designed to investigate the impact of ART (1&ndash

0301 basic medicineCancer ResearchTraditional Chinese Medicine (TCM) growth inhibition ferroptosis reactive oxygen species (ROS)Cell cycle checkpointBiologyurologic and male genital diseasesreactive oxygen species (ROS)lcsh:RC254-282Articlegrowth inhibition03 medical and health scienceschemistry.chemical_compound0302 clinical medicinerenal cell carcinoma (RCC)medicineClonogenic assayCytotoxicityartesunate (ART)SunitinibTraditional Chinese Medicine (TCM)Cell cyclelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensferroptosissunitib resistance030104 developmental biologyOncologychemistryCell cultureApoptosis030220 oncology & carcinogenesisCancer researchGrowth inhibitionmedicine.drugCancers
researchProduct

Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines with potent photo-antiproliferative activity.

2017

Abstract Pyrrolo[3′,2′:6,7]cyclohepta[1,2-b]pyridines were synthesized as a new class of tricyclic system in which the pyridine ring is annelated to a cycloheptapyrrole scaffold, with the aim of obtaining new photosensitizing agents with improved antiproliferative activity and lower undesired toxic effects. A versatile synthetic pathway was approached, which allowed the isolation of derivatives of the title ring system with a good substitution pattern on the pyrrole moiety. Photobiological studies revealed that the majority of the new compounds showed a potent cytotoxic effect upon photoactivation with light of the proper wavelength, especially when decorated with a 2-ethoxycabonyl group an…

0301 basic medicineLightPyridines01 natural sciencesAntioxidantschemistry.chemical_compound7]cyclohepta[1NeoplasmsDrug DiscoveryTumor Cells CulturedMoietyPyrrolechemistry.chemical_classificationPhotosensitizing AgentsGeneral MedicinePhotosensitizing AgentPyrrolo[3′2′:67]cyclohepta[12-b]pyridine-9(1H)-oneReactive oxygen speciemedicine.symptomPhototoxicity2-b]pyridine-9(1H)-onesStereochemistryBlotting WesternPhoto-antiproliferative activityAntineoplastic AgentsRing (chemistry)Phototoxicity03 medical and health sciencesStructure-Activity RelationshipPyridinemedicineHumansPyrrolo[3′PyrrolesCell ProliferationPharmacologyPhotosensitizing agent010405 organic chemistry2′:6Drug Discovery3003 Pharmaceutical ScienceOrganic ChemistryPhoto-antiproliferative activity; Photosensitizing agents; Phototoxicity; Pyrrolo[3′2′:67]cyclohepta[12-b]pyridine-9(1H)-ones; Reactive oxygen species; Pharmacology; Drug Discovery3003 Pharmaceutical Science; Organic ChemistryCombinatorial chemistry0104 chemical sciences030104 developmental biologychemistryMechanism of actionPhoto-antiproliferative activity; Photosensitizing agents; Phototoxicity; Pyrrolo[3′; 2′:6; 7]cyclohepta[1; 2-b]pyridine-9(1H)-ones; Reactive oxygen species; Pharmacology; Drug Discovery3003 Pharmaceutical Science; Organic ChemistryDrug Screening Assays AntitumorReactive Oxygen SpeciesTricyclicEuropean journal of medicinal chemistry
researchProduct

The role of mitochondrial reactive oxygen species, NO and H2S in ischaemia/reperfusion injury and cardioprotection

2020

Redox signalling in mitochondria plays an important role in myocardial ischaemia/reperfusion (I/R) injury and in cardioprotection. Reactive oxygen and nitrogen species (ROS/RNS) modify cellular structures and functions by means of covalent changes in proteins including among others S‐nitros(yl)ation by nitric oxide (NO) and its derivatives, and S‐sulphydration by hydrogen sulphide (H2S). Many enzymes are involved in the mitochondrial formation and handling of ROS, NO and H2S under physiological and pathological conditions. In particular, the balance between formation and removal of reactive species is impaired during I/R favouring their accumulation. Therefore, various interventions aimed a…

0301 basic medicineMitochondrial ROSIschemiaEndogenyheartMitochondrionRedoxNitric oxide03 medical and health scienceschemistry.chemical_compound0302 clinical medicinenitric oxidemedicinechemistry.chemical_classificationCardioprotectionreactive oxygen speciesReactive oxygen speciesVDP::Medisinske Fag: 700::Basale medisinske odontologiske og veterinærmedisinske fag: 710Cell Biologymedicine.diseaseVDP::Medical disciplines: 700::Basic medical dental and veterinary science disciplines: 710Cell biologyreperfusionmitochondria030104 developmental biologychemistry030220 oncology & carcinogenesiscardioprotectionMolecular Medicineischaemiahydrogen sulphidecardioprotection; heart; hydrogen sulphide; ischaemia; mitochondria; nitric oxide; reactive oxygen species; reperfusion
researchProduct

Enzymatic Spermine Metabolites Induce Apoptosis Associated with Increase of p53, caspase-3 and miR-34a in Both Neuroblastoma Cells, SJNKP and the N-M…

2021

Neuroblastoma (NB) is a common malignant solid tumor in children and accounts for 15% of childhood cancer mortality. Amplification of the N-Myc oncogene is a well-established poor prognostic marker in NB patients and strongly correlates with higher tumor aggression and resistance to treatment. New therapies for patients with N-Myc-amplified NB need to be developed. After treating NB cells with BSAO/SPM, the detection of apoptosis was determined after annexin V-FITC labeling and DNA staining with propidium iodide. The mitochondrial membrane potential activity was checked, labeling cells with the probe JC-1 dye. We analyzed, by real-time RT-PCR, the transcript of genes involved in the apoptot…

0301 basic medicinePolyamine; neuroblastoma; apoptosis; microRNA; mitochondria; reactive oxygen species; oncotherapychemistry.chemical_compound0302 clinical medicineAnnexinpolyamineSettore BIO/10 - BiochimicaAntineoplastic Combined Chemotherapy ProtocolsCytotoxic T cellSettore BIO/06 - Anatomia Comparata E CitologiaBiology (General)Membrane Potential Mitochondrialreactive oxygen speciesN-Myc Proto-Oncogene ProteinmicroRNAChemistryCaspase 3apoptosisGeneral MedicineBlotGene Expression Regulation Neoplasticmitochondria030220 oncology & carcinogenesisAmine Oxidase (Copper-Containing)Signal TransductiononcotherapyQH301-705.5Caspase 3apoptosis; microRNA; mitochondria; neuroblastoma; oncotherapy; polyamine; reactive oxygen species.ArticleNO03 medical and health sciencesneuroblastomaNeuroblastomaCell Line TumormedicineAnimalsHumansPropidium iodideRats WistarCell ProliferationOncogeneGene Amplificationmedicine.diseaseapoptosis; microRNA; mitochondria; neuroblastoma; oncotherapy; polyamine; reactive oxygen speciesMolecular biologyMicroRNAs030104 developmental biologyApoptosisSpermineTumor Suppressor Protein p53
researchProduct